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Abstract. Stream processing is mainstream (again): Widely-used stream
libraries are now available for virtually all modern OO and functional
languages, from Java to C# to Scala to OCaml to Haskell. Yet expressivity
and performance are still lacking. This dissertation identifies the key
high-level differences between various implementations, observes that
future use cases are tied with past design decisions, and shows simple
abstraction mechanisms are not sufficient. Is it possible to modularize
the implementation of streams to enhance such libraries in terms of
extensibility and performance? We present a twofold modularization of
streams. To begin with, we untangle streams from the definition of their
syntax and semantics and afterwards we liberate them from the need of
a “sufficiently-smart” compiler. The utmost goal of this dissertation is to
make streams extensible and performant, while maintaining their high
level structure.
Our contributions are preceded by a performance assessment, of the cur-
rent state-of-the-art of streaming libraries. Subsequently, we first propose
a mechanism to enhance the maintainability of streams, supporting a
high-level of extensibility. We treat streams as a domain-specific language
and we design and implement StreamAlg, a library that has the ability
to accept new operators and semantics á la carte. Next, we port the
library design we used for streams to Java itself, with a lightweight tool
named Recaf. We show how to create dialects in Java, override its se-
mantics, support new syntactic elements and much more. Among many
examples and case studies we build an extension of Java with a keyword
that enables us to construct streams similar to C#. The culmination of
our work is a library design, Strymonas, for very efficient streams while
preserving their high-level nature. It explicitly avoids the reliance on
black-box optimizers and “sufficiently-smart” compilers, offering highest,
guaranteed and portable performance. Our approach relies on high-level
concepts that are then readily mapped into an implementation.

Keywords: Code generation, domain-specific languages, multi-stage
programming, optimization, stream fusion, streams

1 Introduction

Programming languages have started shifting away from the sequential program-
ming model that the von Neumann architecture so vigorously imposed [2]. Instead
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of thinking in terms of commands and static storage, modern programming needs
often encourage thinking in terms of processes and transformations over flows
of data. That transition happened over several decades of research and develop-
ment in programming languages, systems, and computer architectures. Streaming
functionality is a prominent representative of this trend. Casually speaking, in
computer science, a stream is a sequence of elements that can be piped through
a series of transformation steps. A streaming library is a software library to
manipulate streams. All streaming libraries seem to fulfill similar goals; however,
their vastly different characteristics make them one of the most fascinating areas
of software construction.

This dissertation investigates the modern design decisions behind the stream-
ing libraries that are used in general-purpose programming. We identify the key
high-level differences between various implementations and observe that future
use cases are tied with past design decisions and simple abstraction mechanisms
are not sufficient. Is it possible to modularize the implementation of streams to
enhance such libraries in terms of extensibility and performance? We present a
twofold modularization of streams. Firstly, we untangle streams from the defini-
tion of their syntax and semantics, and secondly, we liberate them from the need
of a “sufficiently-smart” compiler. The utmost goal of this dissertation is to make
streams extensible and performant, while maintaining their high level structure.

Nowadays, streaming libraries let us model algorithms as if data were in
motion and not stationary: stock ticks, tweets, sales, products, inventory and
real-time analytics are only some of the examples that generate petabytes of
information available to data scientists. In terms of conceptual modeling, a stream
corresponds to a pipe transporting gas or liquids over long distances. Materials
are being processed in location A where an activity f takes place. After processing
ends, each element is put in the pipe and is transferred to another location B,
where f ′ takes place. The pipe represents the flow of data and the activities
f and f ′ represent transformations on each element of the stream. We have
only declared what activities take place and not how each transformation works.
“Stream processing lets us model systems that have state without ever using
assignment or mutable data” per the authors of Structure and Interpretation of
Computer Programs [1].

A streaming library is typically offered with a set of operators to create streams,
transform and consume them into scalar or other kinds of data structures, as
shown in Figure 1. Its distinguishing feature in relation to simple collection APIs
is that intermediate transformations are performed on-demand, thus they do not
perform more computation than needed. Producer operators can be either backed
by an in-memory data structure or not. of arr creates a stream out of an array
and unfold builds a (possibly unbounded) stream from a seed value (it unfolds a
whole stream from a single value). Next are operators that transform a stream.
A stream can be transformed either in a linear or a non-linear way. map applies
a function f to each element of the input stream and returns a transformed
stream. The number of elements on the input streams is equal to the number
on the transformed stream. This is where linearity comes from. On the contrary,



// Producers of finite

val of_arr : 'a array → 'a stream

// Producers of possibly infinite

val unfold : ('state → ('a * 'state) option) → 'state → 'a stream

// Transformers of linear nature

val map : ('a → 'b) → 'a stream → 'b stream

// Transformers of non-linear nature

val filter : ('a → bool) → 'a stream → 'a stream

val take : int → 'a stream → 'a stream

val flat_map : ('a → 'b stream) → 'a stream → 'b stream

// Transformers of parallel loops

val zip_with : ('a → 'b → 'c) → 'a stream → 'b stream → 'c stream

// Consumers

val fold : ('state → 'a → 'state) → 'state → 'a stream → 'state

Fig. 1: Stream Operators

filter applies a predicate to the input stream, again element-wise and unless the
predicate is satisfied, the element does not appear on the output stream. Other
operators like take sub-range the input stream based on a counter value. flat map

applies a function to each element; the results of the function application are
concatenated to form the output stream, which can be a stream of zero, one
or more elements. zip with merges two streams according to a zipping function,
applied element-wise over two streams. As expected, zip with can have variations
on the number of input streams as well as a default behavior like zipping two
elements into a pair (called simply zip). Finally, we have consumers, like fold

which apply a binary function, combining all elements of the stream. fold is a
standard recursion operator for processing lists and can be used to fold a stream
(like folding a piece of paper) into something else: sum, product, max, min, count,
boolean operations like disjunction or and conjunction and, concat are only some
functions that can be implemented in terms of fold.1

We present the same pipeline in two language (Figures 2 and 3). Both pipelines
calculate the sum of squared elements of an array.

1 In fact, fold is highly powerful and standard operators like map and filter can also
be implemented in terms of it.



def sumOfSquares(arr : Array[Double]) : Double = {

val sum : Double = arr.view

.map(a_i => a_i * a_i)

.sum

sum

}

Fig. 2: Sum of squares in Scala

public double sumOfSquares(double[] arr) {

double sum = DoubleStream.of(arr)

.map(a_i → a_i * a_i)

.sum();

return sum;

}

Fig. 3: Sum of squares in Java 8

2 Two Modern Needs: Extensibility & Performance

The rationale behind streams for general-purpose programming is that they can be
used for fast data processing by providing a minimal and easy-to-use abstraction.
However, the design decisions behind them tie the implementation with future
use cases. Consider the mainstream, VM-based, multi-paradigm programming
languages C# (through the System.Collections.IEnumerable interface) and Java
(through the java.util.stream interface), which offer vastly different designs for
streams. While the first offers a zip operator, the second does not, sacrificing the
functionality in favor of performance. Another example is that Java 8 Streams, due
to their internal structure, following a push-based design, significantly outperform
C#, following a pull-based design, in a number of occasions. On the flipside, C#
guarantees laziness in more cases, often permitting higher memory efficiency.

Two key observations motivate our study. The first is that streams need not
be tightly coupled to either their implementation or the range of operators they
support. The user can freely change the underlying semantics for any reason.
To achieve this we propose a new design for streams, StreamAlg, and we view
the API of streaming libraries as a domain specific language (DSL). Using that
perspective we can study both their syntactic and their semantic elements. In
order to modularize streams on both, we isolate the functionally-inspired API
that all stream APIs share, and we propose an extensible design. This will give
users the opportunity to use different flavors of streams at will. One flavor could
boost performance, another could trace execution steps, yet another could be
the combination of the two!



Next, we apply the same design on the programming language Java. We
propose Recaf, a compiler that liberates both the syntax and the semantics of
Java and offers the same level of extensibility at the language level. Using that
compiler we are able to create extensions for constructs that do not exist in
Java such as a yield keyword to implement iterators and subsequently a stream
library that follows the C# architecture in Java.

The second observation is that modern libraries rely either on extensible
compilers or on a “sufficiently-smart” dynamic compiler to generate efficient
machine-level code—as if the original source code had been loop-based, hand-
written code with state, mutation and . . . human intuition. In the first case, for
example, Haskell provides rewrite rules on the GHC.Base and GHC.List modules
to perform elimination of intermediate data structures. The rules are applied at
compile time [7,19]. Library authors following this strategy usually maintain two
code bases (possibly in the same compilation unit; yet programming two different
things): a) the library itself (following a certain pattern), and b) the optimiza-
tions in the form of rewriting rules. For the second case, of a “sufficiently-smart”
dynamic compiler, the underlying VM technologies are exceptional pieces of engi-
neering and tremendously complex, like the Java Hotspot Server Compiler [14].
However, sometimes it is difficult to predict their behavior. For example the point
that a streams is used may fail to inline (unfold its body) so the quality of the
expected loop can be very poor.2 In this dissertation we view these optimizations
as domain–specific entirely and implement them explicitly in the stream library
itself. We propose Strymonas, a library that embodies the level of separability
described above to streams. We implement Strymonas in both OCaml and Scala.

3 Introducing the StreamAlg design

The new design we propose offers streaming libraries à la carte to maximize exten-
sibility. Our approach requires no language changes, and only leverages features
found across all languages examined—i.e., standard parametric polymorphism
(generics). We argue for the benefits of this design in terms of extensibility and
low adoption barrier (i.e., use of only standard language features), all without
sacrificing performance. Additionally, we demonstrate extensibility and provide
several alternative semantics for streaming pipelines, all in an actual, publicly
available implementation. Finally, we provide an example of the use of object
algebras in a real-world, performance-critical setting.

Underlying our architecture is the object algebra construction of Oliveira and
Cook [12] and Oliveira et al. [13]. This is combined with a library design that
dissociates the push or pull nature of iteration from the operators themselves,

2 A quote by John Rose discussing two design strategies for Java 8 Streams on the
[hotspot-compiler-dev] mailing list: “HotSpot are less good at internal iterators. If
the original point of the user request fails to inline all the way into the internal
looping part of the algorithm (a hidden ”for” loop), the quality of the loop will
be very poor. ”—https://web.archive.org/web/20170322141224/http://mail.

openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html

https://web.archive.org/web/20170322141224/http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
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analogously to the recent “defunctionalization of push arrays” approach in the
context of Haskell [20].

In StreamAlg, a pipeline, shown earlier, gets inverted and parameterized by
an alg object, which designates the intended semantics. For instance, a plain
Java-streams-like evaluation would be written as in Figure 4.

PushFactory alg = new PushFactory();

int sum = Id.prj(

alg.sum(

alg.map(x → x * x,

alg.source(v))))).value;

Fig. 4: Example pipeline with push-based semantics

(The Id.prj and value elements in Figure 4 are part of a standard pattern for
simulating higher-kinded polymorphism with plain generics. They can be ignored
for the purposes of understanding our architecture.)

Although the code in Figure 4 is slightly longer than pipelines we showed
earlier, its elements are highly stylized. The user can adapt the code to other
pipelines with trivial effort, comparable to that of the original code fragment in
Java 8 streams. Most importantly, if the user desired a different interpretation
of the pipeline, the only necessary change is to the first line of the example. An
interpretation that has pull semantics and fuses operators together only requires
a new definition of alg:

FusedPullFactory alg = new FusedPullFactory();

... // same as earlier

Fig. 5: Declaration of an interpretation

Such new semantics can be defined externally to the library itself. Adding
FusedPullFactory requires no changes to the original library code, allowing for
semantics that the library designer had not foreseen.

This highly extensible design comes at no cost to performance. The new
architecture introduces no extra indirection and does not prevent the JIT compiler
from performing any optimization. This is remarkable, since current Java 8 streams
are designed with performance in mind (cf. the earlier push-style semantics). As
we show, StreamAlg matches or exceeds the performance of Java 8 streams.



Recaf

recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) {

using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends FullJavaDirect<R> {

public <U extends AutoCloseable>

IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () ! {

U u = null;

try { u = r.get(); body.apply(u).exec(); }

finally { if (u != null) { u.close(); } }

};

}

}

Using<String> alg = new Using<String>();

String usingUsing(String path) {

return alg.Method(

alg.Using(() ! IO.open(path),

(File f) ! { . . . }));

}

Figure 1. High-level overview of Recaf

tains the details on the implementation, including a discussion of
implementation trade-offs, details regarding support of the full Java
language, and IDE features.

To assess the expressiveness and flexibility provided by Re-
caf, Section 7 presents four case studies. The first case study ex-
tends Java with Dart’s generators, asynchronous computations and
reactive streams [20]. Then we show two DSL embeddings, one
for GUI construction and one for Parsing Expression Grammars
(PEGs, [11]). Finally, we show how a subset of Java syntax can be
reappropriated and mapped to a third-party constraint solver. We
discuss the results of case study and outline directions for future
work in Section 8.

2. Overview
2.1 Recaffeinating Java with Recaf
Figure 1 shows a graphical overview of Recaf. It shows how the
using extension is used and implemented using Recaf. The right-
hand side of the diagram represents the user perspective of Re-
caf. The top-left quadrant, is our implementation of Recaf which
is needed to perform the virtualization of statements and expres-
sions. The bottom-left quadrant, shows what a user of an extension
would write to use the using extension introduced in Section 1. The
programmer write an ordinary method, annotated with the keyword
recaf to trigger the source-to-source transformation. To provide the
custom semantics, the user also declares a recaf field, in scope of
the recaf method. In this case, the field alg is initialized to be a
Using object, defined over some (concrete) type T.

The Using class provides the semantics for using and is shown
in the top-right quadrant. Using extends BaseJava which captures
the ordinary semantics of Java, and defines a single method, also
called Using. The Using method defines the semantics of the using

construct, by returning a closure of type IExec. The signature Using

states that it accepts two arguments: an expression conforming to
the standard Java interface AutoCloseable, and a function, represent-
ing the block following the using keyword. The body of the closure,
evaluates the expression (r.get()), and passes the result to the sec-
ond argument (b). The whole evaluation is wrapped in a try-finally
construct to close the resource u, when the body completes (either
normally, or abnormally).

The Using class is developed in plain Java. The user code on
the left, and the the implementation of Using are tied together, by
the source-to-source transformation of Recaf. This is illustrated in
the bottom-right quadrant: it shows the translated code, where each
statement in the user code is transformed into calls on the alg ob-
ject. The using construct itself is mapped to the Using method. The
using block is translated to a closure accepting the resource (File
f), and the initializer is passed as the first argument. Note that the
transformation is generic: it does not know about using specifically.
The transformation employs a naming convention where the iden-

tifying keyword (e.g., using) is mapped to a method with the same
(but capitalized) name (e.g., Using).

Note that the extension developer does not have to worry about
concrete syntax matters. The using constructs is parsed automati-
cally by Recaf’s extended Java parser, because using follows the
structure of Java’s foreach-statement. Recaf caters for many kinds
of extensions, by liberating the ordinary statement syntax of Java.
Section 3 provides more detail; for the full extent of Recaf’s syn-
tactic flexibility, see Section 6.

In addition to using a recaf-annotated field to specify the se-
mantics of a recaf-annotated method, it is also possible to annotate
a formal parameter of a method with the recaf modifier. This al-
lows binding of the semantics at the call site of the method itself.
Thus, Recaf supports three different binding times for the seman-
tics of a method: static (using a static field), at object construction
time (using an instance field), and late binding (method parameter).

Recaf makes the distinction between statement-only virtualiza-
tion and full virtualization. In the latter case, expressions are vir-
tualized too. This mode is enabled by using the recaff keyword,
instead of recaf. Section 4 provides all the details regarding the
difference.

2.2 Object Algebras
The encoding used for the Using class in Figure 1 follows the
design pattern of Object Algebras [22], which can be seen as
an object-oriented encoding of tagless interpreters [5]. Instead of
defining a language’s abstract syntax using concrete data structures,
it is defined using generic factories: a generic interface declares
generic methods for each syntactic construct. Implementations of
such interfaces define a specific semantics by creating semantic
objects representing operations like pretty printing, evaluation, and
so on.

Object Algebras are a simple solution to the expression prob-
lem [31]. As such they provide type-safe, modular extensibility
along two axes: adding new data variants and adding new opera-
tions over them without changing existing code. For instance, the
Using algebra extends the base Java semantics with a new syntactic
construct. On the other hand, the generic interface representing the
abstract syntax of Java can also be implemented again, to obtain a
different semantics. Notice that we define the algebras using Java
8 interfaces, that admit default methods. These methods enable an
even more powerful mechanism to combine independently devel-
oped extensions: using interface inheritance with default methods
results in stateless trait composition. The resulting modular flexi-
bility is a crucial aspect of Recaf. We explore the modular extensi-
bility in depth in Section 5.

3. Virtualizing Statements
In this section we describe the first level of semantic and syntactic
polymorphism offered by Recaf, which restricts virtualization and
syntax extension to statement-like constructs.

3.1 µJava
µJava is a simplified variant of Java used for exposition in this pa-
per. In µJava all variables are assumed to be final, there is no sup-
port for primitive types nor void methods, all variables declaration
have initializers. Figure 2, shows the abstract syntax of µJava state-
ments and method bodies in the form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.

Initial submission to OOPSLA’16 2 2016/3/22

recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) {

using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends BaseJava<R> {

<U extends AutoCloseable>

IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () ! { U u = null;

try { u = r.get(); body.apply(u).exec(); }

finally { if (u != null) u.close(); } };

}

}

Using<String> alg = new Using<String>();

String usingUsing(String path) {

return alg.Method(alg.Using(() ! IO.open(path), (File f) ! { . . . }));

}

Figure 2. High-level overview of Recaf

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {
S Exp(Supplier<Void> e);
<T> S Decl(Supplier<T> e, Function<T, S> s);
<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);
S If(Supplier<Boolean> c, S s1, S s2);
S Return(Supplier<R> e);
S Seq(S s1, S s2);
S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract syntax of
µJava method bodies and statements.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.

The MuJava interface assumes that expressions are represented
using the standard Java Supplier type, which represents thunks.
Java expressions may perform arbitrary side-effects; the thunks
ensure that evaluation is delayed until after the semantic object are
created.

The constructs For-each and Decl employ higher-order abstract
syntax (HOAS [24]), to introduce local variables. As a result, the
bodies of declarations (i.e., the statements following it, within the
same scope) and for-each loops are represented as functions from
some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between the
syntax-driven transformation of Recaf and the implementation of
the actual semantics. In other words, the transformation expects
the methods corresponding to ordinary Java statements to conform
to the signatures of MuJava and MuJavaMethod. Note, however, that
R does not have to be bound to the same concrete type in both
MuJavaMethod and MuJava. This means that the return type of a
virtualized method can be different than the type of expressions
given to Return. Section 3.5 below describes a language extension
that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and consists of
two transformation functions M and S , respectively transform-
ing method bodies, and statements. The transformation folds over
the syntactic structure of µJava, compositionally mapping each
construct to its virtualized representation. Both functions are sub-
scripted by the expression a, which represents the actual algebra
that is used to construct the semantics. The value of a is determined
by recaf annotated fields or formal parameters.

MaJSK = return a.Method(SaJSK);

SaJe;K = a.Exp(() ! {e; return null;})

SaJif (e) S1 else S2 K = a.If(() ! e, SaJS1K,SaJS2K)
SaJfor(T x: e) SK = a.For(() ! e, (T x) ! SaJSK)

SaJT x = e; SK = a.Decl(() ! e, (T x) ! SaJSK)
SaJS1; S2K = a.Seq(SaJS1K, SaJS2K)

SaJreturn e;K = a.Return(() ! e)
SaJ;K = a.Empty()

SaJ{ S }K = SaJSK

Figure 4. Virtualizing method statements into statement algebras.

for (Integer x: l)
if (x % 2 == 0)
return x;

else ;
return null;

return a.Method(
a.Seq(
a.For(() ! l, (Integer x) !

a.If(() ! x % 2 == 0,
a.Return(() ! x),
a.Empty())),

a.Return(() ! null)));

Figure 5. Example method body (left) and its transformation into
algebra a (right).

As an example consider the code shown in Figure 5. The for-
loop on the left iterates over a list of integers to return the first
even number (or null if none exists). The right side shows how the
code is transformed into the algebra a. The semantics of the code is
now virtualized via the algebra object a. If a implements the same
semantics as ordinary Java, the behavior of executing the code on
the right will be the same as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the existing
control-flow statement syntax of Java. Informally speaking, wher-
ever Java requires a keyword (e.g., for, while etc.), Recaf allows the
use of an identifier. This identifier will then, by convention, corre-
spond to a particular method with the same name in the semantic
algebra.

The following grammar describes the syntax extensions of state-
ments (S) for µJava:

S ::= x! e ; Return-like
| x (T x: e) S For-each like
| x (e) {S} While-like
| x {S} Try-like
| x T x = e; Declaration-like

This grammar defines a potentially infinite family of new language
constructs, by using identifiers (x) instead of keywords. Each pro-
duction is a generalization of existing syntax. For instance, the first
production, follows syntax of return e, with the difference that an
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recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) {

using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends BaseJava<R> {

<U extends Closeable>

IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () ! { U u = null;

try { u = r.get(); body.apply(u).exec(); }

finally { if (u != null) u.close(); } };

}

}

Using<String> alg = new Using<String>();

String usingUsing(String path) {

return alg.Method(alg.Using(() ! IO.open(path), (File f) ! { . . . }));

}
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interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {

S Exp(Supplier<Void> e);

S If(Supplier<Boolean> c, S s1, S s2);

<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);

<T> S Decl(Supplier<T> e, Function<T, S> s);

S Seq(S s1, S s2);

S Return(Supplier<R> e);

S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract
syntax of µJava method bodies and statements.

3.1 µJava
µJava is a simplified variant of Java used for exposition in
this paper. In µJava all variables are assumed to be final,
there is no support for primitive types nor void methods, all
variables declaration have initializers. Figure 3, shows the
abstract syntax of µJava statements and method bodies in the
form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod medi-
ates between the denotation of statements (S) and the return
type R of the virtualized method. The programmer of Recaf
method needs to ensure that R returned by Method corresponds
to the actual return type declared in the method.

The MuJava interface assumes that expressions are repre-
sented using the standard Java Supplier type, which represents
thunks 1. Java expressions may perform arbitrary side-effects;
the thunks ensure that evaluation is delayed until after the
semantic object are created.

The constructs For and Decl employ higher-order abstract
syntax (HOAS [27]) to introduce local variables. As a result,
the bodies of declarations (i.e., the statements following it,
within the same scope) and for-each loops are represented as
functions from some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between
the syntax-driven transformation of Recaf and the implemen-
tation of the actual semantics. In other words, the transforma-

1 We use the term thunk to refer to an anonymous function that has no
parameters.. It represents an unevaluated expression

MaJSK = return a.Method(SaJSK);

SaJe;K = a.Exp(() ! {e; return null;})

SaJif (e) S1 else S2 K = a.If(() ! e, SaJS1K,SaJS2K)
SaJfor(T x: e) SK = a.For(() ! e, (T x) ! SaJSK)

SaJT x = e; SK = a.Decl(() ! e, (T x) ! SaJSK)
SaJS1; S2K = a.Seq(SaJS1K, SaJS2K)

SaJreturn e;K = a.Return(() ! e)
SaJ;K = a.Empty()

SaJ{ S } K = SaJSK

Figure 4. Virtualizing method statements into statement
algebras.

tion expects the methods corresponding to ordinary Java state-
ments to conform to the signatures of MuJava and MuJavaMethod.
Note, however, that R does not have to be bound to the same
concrete type in both MuJavaMethod and MuJava. This means that
the return type of a virtualized method can be different than
the type of expressions given to Return. Section 3.5 below
describes a language extension that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and con-
sists of two transformation functions M and S , respectively
transforming method bodies, and statements. The transforma-
tion folds over the syntactic structure of µJava, composition-
ally mapping each construct to its virtualized representation.
Both functions are subscripted by the expression a, which
represents the actual algebra that is used to construct the
semantics. The value of a is determined by recaf annotated
fields or formal parameters.

As an example consider the code shown in Figure 5. The
for-loop on the left iterates over a list of integers to return
the first even number (or null if none exists). The right side
shows how the code is transformed into the algebra a. The
semantics of the code is now virtualized via the algebra object
a. If a implements the same semantics as ordinary Java, the
behavior of executing the code on the right will be the same
as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the
existing control-flow statement syntax of Java. Informally
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Fig. 6: High level overview of Recaf

4 Introducing the Recaf library

Figure 6 gives a bird’s eye overview of Recaf. It shows how a new language
extension extension is used and implemented with Recaf. The new extension
offer the same functionality with try-with-resources in Java and is called using.
The top shows a snippet of code illustrating how the programmer would use a
Recaf extension, in this case consisting of the using construct. The programmer
writes an ordinary method, decorated with the recaf modifier to trigger the
source-to-source transformation. To provide the custom semantics, the user also
declares a recaf variable, in scope of the recaf method. In this case, an object
with static type of Using<String> is defined (alg in this example).

for ( Customer c : List ) { . . . }

using ( File f : IO.open(path) ) { . . . }

Fig. 7: Recaf matching fragments over the concrete syntax

The downward arrow indicates Recaf’s source-to-source transformation. Recaf
detects that the new keyword relies on the for-each statement syntactically. An
enhanced for-loop, in vanilla Java, omits explicit looping variables by operating



over objects of type *Iterable. The new keyword, using, relies on the same
pattern and the two uses are shown below for comparison (the highlighted parts
in Figure 7 show the fragments over the concrete syntax, that the Recaf compiler
matches to detect the pattern).

Recaf, after detecting the concrete syntax of the pattern, virtualizes the
compilation unit at the method level by transforming the code fragment that
includes the extension to the plain Java code at the bottom.

Each statement in the user code is transformed into calls on the alg object.
The using construct itself is mapped to the Using method. The Using class, shown
in the call-out, defines the semantics for using. It takes two parameters: one of
type ISupply, a lambda that takes no parameters and supplies a value (the value
on the right of the semicolon) and one function of type Function<U, IExec> that
represents the code inside the block of using, as a function, parameterized by a
value of type U (one the left of the semicolon and of type File in this example). It
extends a class (BaseJava) capturing the ordinary semantics of Java, and defines
a single method, also called Using. This particular Using method defines the
semantics of the using construct as a kind of interpreter, of type IExec.

5 Introducing the Strymonas library

We next present Strymonas: a streaming library design that offers both high
expressiveness and guaranteed, highest performance. First, we support the full
range of streaming operators (a.k.a. stream transformers or operators) from past
libraries: not just map and filter but also sub-ranging (take), nesting (flat_map—
a.k.a. concatMap) and parallel (zip_with) stream processing. All operators are
freely composable: e.g., zip_with and flat_map can be used together, repeatedly,
with finite or infinite streams. Our novel stream representation captures the
essence of stream processing for virtually all operators examined in past literature.

Second, our stream representation allows eliminating the abstraction overhead
altogether, for the full set of stream operators. We perform stream fusion and other
aggressive optimizations. The generated code contains no extra heap allocations
in the main loop. By not generating tuples or other objects, we avoid the overhead
of dynamic object construction and pattern-matching, and also the hidden, often
significant overhead of memory pressure and boxing of primitive types as in Java
8 (using the generic types and not the hand-specialized) and in Scala. The result
not merely approaches but attains the performance of hand-optimized code, from
the simplest to the most complex cases, up to well over the complexity point
where hand-written code becomes infeasible. Although the library operators
are purely functional and freely composable, the actual running stream code is
loop-based, highly tangled and imperative.

Our technique relies on staging, a form of metaprogramming, to achieve
guaranteed stream fusion. This is in contrast to past use of source-to-source
transformations of functional languages [8], of AST run-time rewriting [11,15],
compile-time macros [17] or Haskell GHC Rules [16,6] to express domain-specific
streaming optimizations.



Fig. 8: OCaml microbenchmarks in msec / iteration (avg. of 30, with mean-error
bars shown). “Staged” is our library (Strymonas). The figure is truncated: OCaml
batteries take more than 60sec (per iteration!) for some complex benchmarks.

Fig. 9: JVM microbenchmarks (both Java and Scala) in msec / iteration (avg. of
30, with mean-error bars shown). “Staged scala” is our library (Strymonas). The
figure is truncated.

Rather than relying on an optimizer to eliminate artifacts of stream composi-
tion, we do not introduce the artifacts in the first place. Our library transforms
highly abstract stream pipelines to code fragments that use the most suitable
imperative features of the host language. The appeal of staging is its certainty
and guarantees. Unlike the aforementioned techniques, staging also ensures that
the generated code is well-typed and well-scoped, by construction. Our work
describes a general approach, and not just a single library design. To demonstrate
the generality of the principles, we implemented two library versions in diverse
settings. The first is an OCaml library, staged with BER MetaOCaml [9]. The
second is a Scala library (also usable by client code in Java and other JVM
languages), staged with Lightweight Modular Staging (LMS) [18].

We evaluate Strymonas on a suite of benchmarks (Figures 8 and 9), com-
paring with hand-written code as well as with other stream libraries (including
Java 8 Streams). Our staged implementation is up to more than two orders-of-
magnitude faster than standard Java/Scala/OCaml stream libraries, matching



the performance of hand-optimized loops. (Indeed, we occasionally had to improve
hand-written baseline code, because it was slower than the library.)

Thus, our contributions are: (i) the principles and the design of stream
libraries that support the widest set of operations from past libraries and also
permit the full elimination of abstraction overhead. The main principle is a novel
representation of streams that captures rate properties of stream transformers and
the form of termination conditions, while separating and abstracting components
of the entire stream state. This decomposition of the essence of stream iteration
is what allows us to perform very aggressive optimization, via staging, regardless
of the streaming pipeline configuration. (ii) The implementation of the design in
terms of two distinct library versions for different languages and staging methods:
OCaml/MetaOCaml and Scala/JVM/LMS.

6 Conclusions

Summarizing, we improve streams in terms of extensibility and performance, and
with the mechanisms we present, we enhance them without breaking their high
level structure. In this dissertation we treat interpretations and optimizations as
pluggable components and we advocate that domain-specific optimizations must
be developed in “active” Stream APIs instead of “sufficiently-smart compilers”.

7 Credits

The contents of this doctoral dissertation are based on published papers that
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– Recaf: Java Dialects As Libraries [3]; work done while the author was affiliated
with CWI; original design and implementation by the author, Pablo Inostroza
and Tijs van der Storm; implementation of expression-level extensibility and
corresponding applications by Pablo Inostroza.
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